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MATERIALS AND METHODS (1-23)  
Text S1. Study subjects and experimental design 
 Study subjects were 45 adult female rhesus macaques housed in groups of five 
females each at the Yerkes National Primate Research Center Field Station (Table S1). 
Nine groups were initially formed in January – June 2013 (Phase 1), with group 
membership rearranged to form 9 new groups in March – June 2014 (Phase 2). Group 
construction followed a previously established protocol (12) in which females were 
sequentially introduced into indoor-outdoor run housing (25 m by 25 m for each area) 
over the course of 2 - 15 weeks. In both phases, behavioral data collection for each group 
started after the fifth and final female was introduced into the group; biological sample 
collection started 10-16 weeks thereafter (median = 12 weeks) to ensure that rank 
hierarchies were completely stabilized. To maximize between-phase changes in 
dominance rank, each social group in Phase 2 consisted of females who shared the same 
dominance rank or (due to the uneven number of social groups in our study) were 
separated by a maximum of 1 ordinal rank difference in Phase 1 (Table S1). In all cases, 
no co-housed females were close kin (e.g., parent-offspring, grandparent-grandoffspring, 
full sibling or half sibling: fig. S8), and the vast majority (97%, 174 of 180 dyads) had 
never seen each other prior to being co-housed in this study (in either phase). 
 To monitor dominance rank, we collected behavioral data using weekly focal 
observations (345 total hours of observation, 223.5 hours in Phase 1 and 121.5 hours in 
Phase 2). Except where noted, we assigned dominance rank using Elo ratings, a 
continuous measure of rank in which higher scores correspond to higher status and 
ratings are updated following any interaction in which a winner or loser can be scored 
(13, 24, 25). Wins increase the winner’s Elo rating and losses decrease the loser’s Elo 
rating, proportional to the expected outcome of the interaction. Thus, when a higher 
ranking female wins an encounter against a low ranking female, her Elo rating changes 
little because the result was expected based on her pre-interaction rating relative to her 
opponent’s. However, if the outcome were reversed, both females’ Elo ratings would 
change substantially to reflect the observed rank dynamics.  

We calculated Elo ratings using all dominance interactions that occurred after the 
fifth and final female was introduced into a social group. For all females, the initial Elo 
rating was set to a value of 1000 and the baseline number of points a female could 
potentially gain or lose during a dominance interaction (k) was set to 100. For each 
interaction, k was weighted by the expected probability of an individual winning or 
losing, based on a logistic function that was updated after each dominance interaction 
(24). In both phases, order of introduction predicted subsequent dominance rank (Phase 
1: r = -0.57, p = 4.1x10-5, n = 45 females; Phase 2: r = -0.68, p = 3.3x10-7, n = 45 females, 
based on values at the time of sampling for cell type-specific expression analyses; Fig. 
1B), and Elo ratings remained highly stable for the duration of each phase (Elo stability 
index range: 0.995 – 1.00; where 1 represents a perfectly stable hierarchy in which lower-



ranking females never outcompete higher-ranking females (26)). Elo ratings were also 
highly correlated with more traditional ordinal measures of dominance rank (Pearson’s r 
= -0.94, p = 6.1x10-40 (17)). 

To test whether Elo ratings predicted social interactions, as expected, we assessed 
rates of received harassment and grooming. Received harassment was defined as the per 
hour rate of harassment received from a female’s group mates, mean-centered across 
groups so that the average rate of harassment received by females in a group was set 
equal to 0. Grooming rates were defined as the amount of time per hour a female spent 
grooming with her group mates, also mean-centered to 0 for each social group. We also 
used these values to test the mediating role of agonistic (received harassment) and 
affiliative (grooming) behaviors on rank effects on gene expression levels, for the cell 
type-specific gene expression analysis (see “Behavioral mediation analysis” below). 
 
Text S2. Blood sample collection 
 To measure gene expression levels in purified cell populations, we drew 12-20 
mL of blood from each female, purified the PBMC fraction using density gradient 
centrifugation, and performed fluorescent activated cell sorting on a BD FACSAria IIu 
machine housed at the Duke Human Vaccine Institute Flow Cytometry Core. We sorted 
cell types as follows: classical monocytes (CD3-/CD20-/HLA-DR+/CD14+), natural killer 
cells (CD3-/CD20-/HLA-DR-/CD16+), B cells (CD3-/CD20+/HLA-DR+), helper T cells 
(CD3+/CD8-/CD4+), cytotoxic T cells (CD3+/CD8+/CD4-) (see fig. S3 for sorting strategy 
and Table S2 for antibody information). Purified cells were immediately pelleted, lysed 
in buffer RLT, and frozen at -80°C until DNA and RNA extraction using the Qiagen 
AllPrep extraction kit. Sorted cell populations (five populations per blood sample) were 
obtained once for each study subject in each of the two study phases.  

To test how dominance rank affects the LPS response, we drew 1 mL of whole 
blood from each female (in Phase 2 only) directly into a TruCulture tube (Myriad RBM) 
that contained cell culture media plus 1 µg/mL ultra-pure lipopolysaccharide (LPS) from 
the E. coli 0111:B4 strain (“LPS+”), and another 1 mL of blood from the same draw into 
a TruCulture tube that contained cell culture media only (“control”). Samples were 
incubated in parallel for 4 hours at 37°C. We then separated the serum and cellular 
fractions, and lysed and discarded the red cells from the remaining cell pellet by applying 
red blood cell lysis buffer (RBC lysis solution, 5 Prime Inc.) for 10 minutes followed by 
centrifugation. We lysed the remaining white blood cells in Qiazol for storage at -80°C, 
and extracted total RNA from each sample using the Qiagen miRNAEASY kit. To 
control for variation in cellular composition in downstream analyses, we also used flow 
cytometry to quantify the proportion of 11 different cell types in blood samples obtained 
in the same draw: polymorphonuclear (CD14dim/SSC-A>100K/FSC-A>100K), classical 
monocytes (CD14+/CD16-), CD14+ intermediate monocytes (CD14+/CD16+), CD14- non-
classical monocytes (CD14-/CD16+), helper T cells (CD3+/CD4+), cytotoxic T cells 
(CD3+/CD8+), double positive T cells (CD3+/CD4+/CD8+), CD8- B cells (CD3-

/CD20+/CD8-), CD8+ B cells (CD3-/CD20+/CD8+), natural killer T lymphocytes 
(CD3+/CD16+), and natural killer cells (CD3-/CD16+) (fig. S9). 
 
Text S3. RNA-seq data generation  
 Library construction. We constructed RNA-sequencing libraries for each sample 



(purified cell populations in both phases and control and LPS+ samples in phase 2) using 
the NEBNext Ultra RNA Library Prep Kit (New England Biolabs). Briefly, we purified 
the poly-adenylated mRNA from 200 ng of total RNA using the NEBNext Poly(A) 
mRNA Magnetic Isolation Module. The mRNA was then reverse transcribed into cDNA, 
ligated to Illumina adapters, size-selected for a median size of ~350 bp, and amplified via 
PCR for 13 cycles. We tagged each sample with a unique molecular barcode and pooled 
10-12 samples per Illumina HiSeq 2500 lane of single-end 100 bp sequencing. 

Read alignment. Following sequencing, we trimmed Illumina adapter sequence 
from the ends of the reads using Trim Galore! (v0.2.7), mapped trimmed reads to the 
rhesus macaque genome (MacaM v7; (27)) using the STAR 2-pass method (28), and 
collated the number of reads that mapped uniquely to each annotated MacaM gene 
(v7.6.8) using HTSeq-count (v0.6.1) with the option “intersection-nonempty” (29). For 
the LPS challenge experiment and each cell type-specific data set, this procedure resulted 
in a p x n read-count matrix, where p is the number of genes measured and n is the 
number of samples in the given data set. After excluding samples that did not produce 
sequenceable libraries and post-sequencing quality control, we generated read counts for 
83 samples in the LPS challenge experiment (43 controls and 40 treatment), and 440 
samples for the cell type-specific analysis (89 in helper T cells, 89 in cytotoxic T cells, 86 
in B cells, 88 in natural killer cells, and 88 in monocytes). We confirmed the identity of 
all samples based on genotyping from the RNA-seq reads (see below for details). 
 
Text S4. Read normalization and correction for batch effects 
 Prior to RNA-seq data analysis, we first filtered out genes that were very lowly or 
not detectably expressed in our samples. For the cell type-specific data sets, we removed 
any gene with a median RPKM ≤ 2 in that cell type. For the LPS challenge experiment, 
genes were removed if the median RPKM was ≤ 2 in both control and LPS-stimulated 
samples. This procedure resulted in a different number of genes that passed filter in each 
data set: 8,823 genes in helper T cells, 8,802 genes in cytotoxic T cells, 8,388 genes in 
monocytes, 8,754 genes in natural killer cells, 8,951 genes in B cells and 9,047 genes for 
the LPS experiment (control and LPS+).  

For each of the six data sets, we normalized the resulting read count matrix using 
the function voom from the R package limma (30). We then modeled the normalized 
expression values as a function of the sample donor’s social group membership (9 social 
groups in each phase for the cell type-specific data sets, for a total of 18 distinct groups; 
and the 9 social groups in Phase 2 only for the LPS challenge data set). Because we 
sampled all females in each group within a short time frame (median time frame for the 
complete group to be sampled was 3 days; groups were entirely sampled for a given 
analysis within a 10 day window, with all but two exceptions when the final female was 
sampled several weeks later), controlling for the identity of the group removes biological 
variation related to differences in group dynamics, and most technical batch effects 
related to sample collection and processing. Thus, we used the residuals of the model 
relating normalized expression to social group identity as our primary outcome measure 
in all subsequent analyses.  
 
Text S5. Genotyping 
 We used genotype data to confirm sample identity across experiments and to 



control for genetic relatedness among individuals in our analyses (pairwise genetic 
relatedness in our sample was on average low, but several close kin were included in the 
data set, although never housed in the same social group: fig. S8) To do so, we combined 
the RNA-seq reads for all five purified cell types for each female and called variants 
using HaplotypeCaller from the Genome Analysis Toolkit (GATK v3.3.0), following the 
Best Practices for variant calling in RNAseq 
(https://www.broadinstitute.org/gatk/guide/article?id=3891). After genotyping we 
retained sites that passed the following filters: quality score ≥100; QD < 2.0; MQ < 35.0; 
FS > 60.0; HaplotypeScore >13.0; MQRankSum < −12.5; and ReadPosRankSum < −8.0. 
Finally, we estimated kinship with the program lcMLkin (31) using single nucleotide 
variants that were genotyped in all 45 females and that were thinned to be at least 10 kb 
apart (n = 54,165).  
 
Text S6. Modeling rank effects on gene expression 
 To identify genes that were significantly affected by dominance rank, we used a 
linear mixed effects model that controls for relatedness within the sample (32-34). We 
analyzed each of the six data sets (five purified cell types plus the LPS challenge data) 
separately using the R package EMMREML (35), in each case working with gene 
expression values after controlling for social group/batch effects, as described above. 

For each gene in the cell type-specific data sets, we first estimated the effect of 
dominance rank on gene expression levels across phases using the following model: 
 
 𝑦 = 𝜇 + 𝑟𝛽 + 𝑎𝛾 + 𝑍𝑢 + 𝜀, 

𝑢~𝑀𝑉𝑁 0,𝜎!!𝐾 , 
𝜀~𝑀𝑉𝑁(0,𝜎!!𝐼) 

(1) 

 
where y is the n by 1 vector of residual gene expression levels for the n samples collected 
in Phase 1 and Phase 2; µ is the intercept; r is an n by 1 vector of Elo ratings and β is its 
effect size; and a is an n by 1 vector of female age in years at the time of sample 
collection and γ is its effect size. The m by 1 vector u is a random effects term to control 
for kinship and other sources of genetic structure. Here, m is the number of unique 
females in the analysis (m=45), the m by m matrix K contains estimates of pairwise 
relatedness derived from a 45 x 54,165 genotype data set, 𝜎!! is the genetic variance 
component (0 for a non-heritable trait, but most gene expression levels are heritable: (36, 
37)), and Z is an incidence matrix of 1’s and 0’s that maps measurements in Phase 1 and 
Phase 2 to individuals in the random effects term (thus controlling for repeated 
measurements for the same individual across phases). Residual errors are represented by 
ε, an n by 1 vector, where 𝜎!!  represents the environmental variance component 
(unstructured by genetic relatedness), I is the identity matrix, and MVN denotes the 
multivariate normal distribution. For each data set and gene, we tested the null hypothesis 
that β = 0 versus the alternative hypothesis, β ≠ 0. To test for dominance rank effects on 
the cellular composition of our samples (based on flow cytometry data), we used a 
parallel model replacing gene expression level (y) with the logit-transformed proportional 
representation of each of 11 cell types and added a fixed effect term to account for three 
rounds of repeated measures for the flow data (once in Phase 1 and twice in Phase 2; fig. 
S2). As in eq (1), this model included a random effects term to control for repeated 



measurements from the same genotype/individual.  
 To test for consistency and plasticity of rank effects on gene expression levels 
across phases, we also ran a nested model that estimated the effects of rank specific to 
each phase:  
 
 𝑦 = 𝜇 + 𝑟!𝛽!×𝐼(𝑝 = 1)+ 𝑟!𝛽!×𝐼(𝑝 = 2)+ 𝑎𝛾 + 𝑍𝑢 + 𝜀, (2) 
 
where the notation is the same as above, but I is an indicator variable for phase, p (phase 
1 or phase 2). To produce an empirical null distribution for rank effects in these two 
models, we performed 1000 permutations of female dominance rank and re-ran the 
analyses using randomized rank values. 

To test for rank effects on gene expression in the LPS challenge experiment, we 
estimated the effects of rank specific to the control and treatment conditions (all data 
were collected for Phase 2 only): 

 
 𝑦 = 𝜇 + 𝛿𝑐 + 𝑟𝛽!×𝐼 𝑐 = 0 + 𝑟𝛽!×𝐼 𝑐 = 1 + 𝑋𝑉!×𝐼 𝑐 = 0

+ 𝑋𝑉!×𝐼 𝑐 = 1 + 𝑍𝑢 + 𝜀 (3) 

 
where the notation for gene expression, dominance rank, the intercept, residuals, and 
random effects are consistent with the models above, but I is an indicator variable for c, 
the condition (control = 0, treatment = 1), rather than for phase, and an additional effect, 
𝛿, is fit for the binary condition variable. Other fixed effects covariates, for mean-
centered age and the first two principal components from a PCA decomposition of the 
normalized cell type proportion data (matrix X), are also estimated as nested effects 
within condition (vectors V1 and V2). To explicitly extract interaction effects between 
dominance rank and condition, we reformulated model (3) as follows: 

 
 𝑦 = 𝜇 + 𝛿𝑐 + 𝑟𝛽 + 𝑋𝑉 + (𝑟×𝑐)𝛽!"# + 𝑋×𝑐 𝑉!×! + 𝑍𝑢 + 𝜀, (4) 
 
where we tested the null hypothesis that βrxc = 0 versus the alternative hypothesis, βrxc ≠ 0. 
For the LPS challenge experiment, we produced empirical null distributions for rank 
effects by permuting the dominance rank values associated with pairs of samples (control 
and LPS-treated) as a block, 1000 times, and re-running our analyses. To produce a 
corresponding empirical null for the effect of LPS stimulation (i.e., condition) on gene 
expression, we randomized condition within each pair of samples for each female. When 
only a treatment or control sample was available for a female, we randomly assigned it to 
one of the two conditions with 50% probability. 

For all of our analyses, we controlled for multiple testing using a generalization of 
the false discovery rate method of Storey and Tibshirani (38) to empirical null p-value 
distributions generated via permutation (code available upon request).  
 
Text S7. Gene Ontology enrichment 

Gene ontology (GO) enrichment analyses were performed using the Cytoscape 
module ClueGO (39). We conducted one-sided Fisher’s Exact Tests for enrichment and 
corrected for multiple tests using the Benjamini-Hochberg (B-H) method (40). To reduce 
the multiple testing space and account for the nested nature of GO terms, we analyzed 



only terms that fell between levels 3 and 8 of the GO tree in the term category of 
Biological Process, included at least 10 genes in our data set, and for which at least 5% of 
the total number of genes belonging to the GO term were present in the test gene set. We 
report significant terms as those that were enriched in the target gene set at a B-H 
corrected p-value ≤ 0.05 (Table S4). In the network diagrams, this threshold was 
sometimes made more stringent for the sake of visualization (i.e., in Fig. 3D we only 
show terms enriched in category I at FDR < 10-5, while, in fig. S4A, we restrict the 
results shown to those with a FDR < 0.01). 

For the five cell type-specific data sets, we conducted enrichment analyses 
separately for genes that were more highly expressed in low-ranking animals and genes 
that were more highly expressed in high-ranking animals, in both cases against the 
background set of all measured genes in that cell type. For the LPS challenge data, we 
conducted one enrichment analysis for each of the four LPS-rank interaction categories 
(stratified by direction of the LPS response and direction of the rank effect on gene 
expression levels in the LPS+ condition, as reported in the main text; Fig. 3D) against the 
background set of all genes that responded significantly to LPS at an FDR < 0.05.  
 
Text S8. Meta-analysis for tissue specificity 
 True shared effects of rank across cell types could be missed in our above 
analyses if they failed to survive FDR correction in some cell types. We therefore 
complemented our independent analyses of purified cell populations with a meta-analytic 
approach, MeSH (Meta-analysis with Subgroup Heterogeneity; (41)), focusing on the 
union set of 1,622 genes that were detectably expressed in all five cell types and 
significantly associated with rank, in any cell type, at an FDR<10%. We ran MeSH for 
each gene using the Exchangeable Effects (EE) model, using β, the effect of rank on a 
gene’s expression; se(β), the standard error on that coefficient; and a grid file of discrete 
priors for the mean effect of rank across cell types (ω) and the heterogeneity of effects 
across cell types (ψ). We constructed the grid file to span the effect sizes observed in our 
data (ω = [0.00,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08] and ψ = 
[0.000,0.002,0.004,0.006,0.008,0.010,0.012,0.014,0.016,0.018,0.020]). 
 
Text S9. Behavioral mediation analysis 
 To estimate the contribution of agonistic and affiliative behaviors to the effect of 
social status on gene expression levels, we conducted two mediation analyses: one 
investigating the mediating effects of received harassment, and the second testing the 
mediating effects of grooming rates. We investigated only genes for which we detected a 
significant rank-gene expression relationship in the cell type-specific analyses, focusing 
on the two cell types (natural killer and helper T cells) for which this signal was 
strongest.  
 For each gene, we were interested in estimating the indirect effect of dominance 
rank on gene expression levels through the mediating variable (grooming or received 
harassment). The strength of the indirect effect was estimated as the difference between 
the effect of rank in two models: the “unadjusted” model that did not account for the 
mediator (equivalent to 𝛽 in equation 1 above), and the effect of rank in an “adjusted” 
model (𝛽! in equation 5 below) that incorporated the mediator, t. 
 



 𝑦 = 𝜇 + 𝑟𝛽′+ 𝑡𝛾! +   𝑎𝛾 + 𝑍𝑢 + 𝜀, (5) 
 
where notations are the same as in equation (1), but with the addition of an effect for the 
mediating variable, 𝛾! . To assess the significance of the indirect effect, 𝛽 − 𝛽!, we 
performed 1000 iterations of bootstrap resampling to calculate 95% confidence intervals 
for each mediator. We deemed an indirect effect significant if the lower bound of the 
95% confidence interval did not overlap with 0. 
 
Text S10. Transcription factor binding site enrichment 
 To investigate transcription factors involved in rank effects on gene expression, 
we combined data on the location of predicted transcription factor binding sites in the 
rhesus macaque genome with data on open chromatin in PBMCs collected from our study 
population. To identify these regions, we generated ATAC-seq libraries from three mid-
ranking females sampled during Phase 2 (using 50,000 cells per female and following 
(42), but skipping the cell lysis step). Libraries were barcoded, multiplexed, and 
sequenced on an Illumina NextSeq 500 using paired-end, 38 bp reads. Reads were 
mapped to MacaM using the bwa-mem algorithm with default settings (43), and exhibited 
the typical periodic pattern of insert sizes associated with nucleosomes. Open chromatin 
regions were identified using MACS2 (44) (--nomodel --keep-dup all -q 0.05 -f BAMPE) 
after merging data from all three libraries into a single alignment file, at a 5% FDR 
threshold. 
 To identify putative TFBSs associated with open chromatin and rank-responsive 
genes, we scanned the rhesus macaque genome for matches to 1900 position weight 
matrices (PWM) obtained from TRANSFAC and JASPAR (45, 46), using a PWM model 
as in (47) and a threshold of 13 (i.e., a 213-fold increase in the likelihood that a motif is a 
binding site relative to background). Because multiple PWMs are often associated with 
the same transcription factor (TF), we clustered them by calculating the Jaccard distance 
between genomic locations associated with each pair of PWMs with the bedtools function 
jaccard (48). After hierarchical clustering of the resulting dissimilarity matrix, we 
considered all PWMs with a dissimilarity ≤ 0.2 (i.e., a Jaccard statistic ≥ 0.8) as members 
of the same “TF cluster”, producing 913 non-redundant TF clusters. We also filtered out 
all TF clusters that were rarely found in open chromatin near annotated genes (<100 cases 
genome-wide), resulting in a final set of 460 motif clusters. For each gene in our data set, 
we then noted whether each TF cluster fell within 5 kb upstream or downstream of the 
gene transcription start site.  

Using this information, we performed two analyses. First, we used Fisher’s Exact 
Tests to ask whether rank-responsive genes were more likely to be associated with a 
given TF cluster than genes with no evidence for rank effects (p > 0.3). We tested for 
overrepresentation of TF clusters separately for genes that were more highly expressed in 
high-ranking females versus those that were more lowly expressed, and performed this 
analysis separately for the natural killer cell data set, the helper T cell data set, and the 
LPS challenge data set. To control for multiple hypothesis testing, we used the false 
discovery rate approach of Benjamini and Hochberg (40). Second, we used an elastic net 
logistic regression approach to ask about the predictive power of TFBS locations in open 
chromatin regions to discriminate between (i) genes upregulated in high ranking 
individuals versus genes unaffected by rank; (ii) genes downregulated in high ranking 



individuals versus genes unaffected by rank; and (iii) genes that were upregulated versus 
downregulated with higher rank. To avoid biases caused by unbalanced outcome classes, 
we randomly subsampled genes from the majority class (without replacement) equal to 
the number of genes in the minority class, calculated prediction accuracy (1 – the model 
misclassification rate) using the function “cv.glmnet” in the R package glmnet (49), and 
repeated this procedure 1000 times  In each iteration, we extracted the betas for each 
TFBS from the model with the best prediction accuracy (because the elastic net approach 
induces sparsity, most betas equal 0).  We considered TFBS clusters to have the best 
evidence for association with rank-responsive genes if they (i) had a non-zero beta in 
more than half of the 1000 elastic net iterations, and (ii) a Fisher’s Exact Test B-H 
corrected p-value < 0.05.  

Using these criteria, we identified multiple enriched TFBS that predicted whether 
a gene was significantly positively or negatively associated with dominance rank with 
62.5% (range: 60.8-64.5%) and 58.8% (range: 52.5%-60.5%) accuracy in the natural 
killer cells and helper T cells, respectively (fig. S10). In the NK cells, many of the 
transcription factors that were most predictive of a gene being more highly expressed in 
low status individuals are linked to inflammatory processes, including NFkB (Fisher’s 
Test OR = 4.01, p= 3.3x10-5), GLI-3, and (Fisher’s Test OR = 2.44, p= 1.3x10-5), and 
SRF (Fisher’s Test OR = 8.91, p= 5.3x10-4; fig. S6 and Table S7) 
 
Text S11. Deconvolution of LPS challenge data and ‘reconvolution” of PBMC gene 
expression levels from cell type-specific data 

To test that the cell types responsible for gene expression responses to LPS 
stimulation conformed with expectations (i.e., were largely driven by monocytes and 
granulocytes), we performed a deconvolution analysis of the gene expression data 
collected in the LPS stimulation experiment. To do so, we drew on the cell type 
composition data measured via flow cytometry for each sample (fig S9), and grouped 
them into six main cell populations: (1) CD14+ monocytes; (2) CD16+ NKs; (3) B cell; 
(4) helper T cells; (5) cytotoxic T cells; and (6) granulocytes. We then applied the least-
squares, partial deconvolution approach implemented in R package csSAM (50). We ran 
csSAM separately for the gene expression data from control versus LPS+ samples (in 
both cases after controlling for batch effects). We then tested for differential gene 
expression between conditions in each of the eight deconvolved datasets using a Welch-
Satterthwaite t-test with a Benjamini-Hochberg FDR correction for multiple testing. 
Finally, we performed Fisher’s Exact Tests to test whether LPS-responsive genes were 
enriched within the set of LPS-responsive genes identified for each de-convolved gene 
expression data set (fig S7: cell lines with median proportion >0.05 in whole blood are 
shown). Only granulocytes (log2(OR)=1.15, p<10-63) and monocytes (log2(OR)=0.46, 
p=5.7x10-12) were significantly enriched for the LPS responsive genes identified in the 
full sample (fig. S7). 

To test whether the control samples in the LPS challenge experiment were 
consistent with our results for the purified, cell type-specific gene expression data, we 
also performed an in silico “reconvolution” analysis for each individual. This analysis 
was based on the gene expression data for each purified cell type and the flow cytometry-
based estimates of cell type proportions. Specifically, we calculated the reconvoluted 
expression level for each gene-individual combination as the mean of the expression level 



of the gene across purified cell types (helper T, cytotoxic T, monocyte, NK, and B), 
weighted by the proportion of each cell type in the PBMC pool for a given sample. For 
each female/phase combination: 

 
 𝑌 = 𝑝𝑋 (6) 
 
where p is a 1 by 5 vector of the proportion of each of the 5 cell types; X is a 5 by n gene 
matrix of the gene expression values, for the n genes measured (in counts per million, 
CPM) in the cell type-specific gene expression data (one column for each cell type); and 
Y is a 1 by n gene vector of the “reconvoluted” gene expression values for the PBMC 
pool. We calculated PBMC gene expression level estimates for all 45 females for each 
phase separately and modeled the reconvoluted expression values as a function of rank 
and age using the same mixed effects models as in the cell type-specific analysis. Note 
that our reconvoluted estimates differ somewhat from the control samples in the LPS 
challenge experiment because we included only PBMC cell types in these estimates, 
whereas in the LPS challenge data, we profiled gene expression levels for all white blood 
cells, including polymorphonuclear cells. 

We found that the effect of rank on the reconstituted gene expression was 
significantly positively correlated with the effect of rank on gene expression in white 
blood cells in the control condition of the LPS experiment (Pearson’s r = 0.35, 
p<2.50x10-248). This relationship was stronger when we only considered rank-responsive 
genes detected in the control condition of the LPS experiment at an FDR < 1% (Pearson’s 
r = 0.59, p=7.14x10-165). 
 
Text S12. Effects of dominance rank on the magnitude of the response to LPS 
stimulation 
 As described in equations (3) and (4), rank effects on gene expression in the LPS 
challenge data are estimated separately for each condition (control versus LPS+). This 
formulation allowed us to estimate the LPS effect on gene expression for high-ranking 
and low-ranking females separately as: 
 

𝛽!"# 𝑟 = 𝛿 + 𝛽!"#𝑟            (7) 
 
where 𝛽!"# 𝑟  is the effect of the LPS treatment for a given Elo rating r, 𝛿  is the LPS 
treatment effect estimated in equation (4), and 𝛽!"# is the interaction effect between rank 
and condition, also estimated in equation (4). In the main text, we calculated these values, 
across all LPS-responsive genes, for r equal to the mean Elo rating for the lowest ranking 
females across groups and for r equal to the mean Elo rating for the highest ranking 
females across groups. This procedure produced a distribution of LPS treatment effects 
for low ranking and high ranking females, showing that low-ranking females exhibit 
exaggerated responses to LPS treatment overall (Fig. 4C, Mann-Whitney test p<10-20). 
 
Text S13. Rank effects in MyD88 vs TRIF induced genes. 

To investigate rank-dependent polarization of the TLR4 signaling pathways 
through TRIF versus MyD88-dependent arms, we used the results from (21), which 
identified sets of mouse genes for which a normal response to antigen induction was 



either MyD88 or TRIF-dependent. These gene lists were obtained by comparing the gene 
expression response of macrophages from wild-type mice to MyD88 or TRIF knock-out 
mice, using six purified TLR agonists. Ramsey et al reported 334 genes that were up-
regulated upon stimulation via the MyD88-dependent pathway and 274 by that were up-
regulated via the TRIF-dependent pathway, among which 238 and 168 rhesus macaque 
orthologues were included in our LPS challenge data set, respectively. 

Using these annotations, we performed three analyses. First, we tested for a 
difference in the distributions of dominance rank effect sizes between MyD88-induced 
versus TRIF-induced genes (conditional on being rank-responsive in the LPS+ 
condition), using a Mann-Whitney test (Fig. 4B). Second, we tested whether MyD88- 
induced or TRIF- induced genes were enriched among Category I (upregulated after LPS 
stimulation and more highly expressed in low-ranking females) or Category II 
(upregulated after LPS stimulation and more highly expressed in high-ranking females) 
genes, using a Fisher’s Exact Test (Fig. 4C). Third, we asked whether females exhibited 
systematically different gene expression levels, depending on their social status, in the 
MyD88 versus TRIF-induced gene sets. For this last analysis, we extracted, for each 
female, the median gene expression level for all genes in the LPS challenge data set that 
are up-regulated upon stimulation via the MyD88-dependent pathway (based on Ramsay 
et al), after controlling for batch effects and other covariates (age, cell composition). We 
then performed linear regression of Elo rating versus median MyD88-dependent gene 
expression levels across females (Fig. 4D). We repeated the same analysis for genes up-
regulated via the TRIF-dependent pathway. 
 
 	
   	
  



Figure S1. Correlation between female dominance ranks across phases. Solid lines 
connect the same female in the two phases of the study, with dots colored by ordinal rank 
in each phase. There was no significant correlation between female ranks across Phases 
(Pearson’s r=0.06, p = 0.68 between phases). 
  

SGE2

SGE1

0 500 1000 1500 2000
elo

st
ud
y

Phase 1

Phase 2

ordinal rank

high ranklow rank

SGE2

SGE1

0 500 1000 1500 2000
elo

st
ud
y

factor(ordinal_rank)
1
2
3
4
5

SGE2

SGE1

0 500 1000 1500 2000
elo

st
ud
y

factor(ordinal_rank)
1
2
3
4
5



 

Figure S2. Association between dominance rank and proportions of 11 white blood 
cell populations. Each plot shows the relationship between Elo rating and the logit-
transformed residual proportions of 11 blood cell populations after controlling for subject 
age and measurement round (proportion data was collected once in Phase 1 and twice in 
Phase 2, for three repeated measures per individual). (A) polymorphonuclear 
(CD14dim/SSC-A>100K/FSC-A>100K), (B) classical monocytes (CD14+/CD16-), (C) 
CD14+ intermediate monocytes (CD14+/CD16+), (D) CD14- activated non-classical 
monocytes (CD14-/CD16+), (E) helper T cells (CD3+/CD4+), (F) cytotoxic T cells 
(CD3+/CD8+), (G) double positive T cells (CD3+/CD4+/CD8+), (H) CD8- B cells (CD3-

/CD20+/CD8-), (I) CD8+ B cells (CD3-/CD20+/CD8+), (J) natural killer T lymphocytes 
(CD3+/CD16+), and (K) natural killer cells (CD3-/CD16+)   
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Figure S3 Cell sorting strategy. (A) Schematic of the cell sorting strategy for purifying 
five populations of PBMCs prior to gene expression analysis. We first removed all dead 
cells and then sorted the cells using 7 cell surface markers (detailed in the Materials and 
Methods and Table S2). (B) Example of the sorting strategy for one sample visualized 
using FlowJo (FlowJo, LLC, Ashland, OR).   
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Figure S4 Gene Ontology enrichment in the cell type-specific analysis. (A) Categories 
enriched in genes more highly expressed in low-ranking animals in NK cells. (B) 
Categories enriched in genes more highly expressed in high-ranking animals in NK cells. 
(C) Categories enriched in genes more highly expressed in low ranking animals in helper 
T cells. We detected only two significant terms for genes that were more highly 
expressed in high-ranking individuals in helper T cells, so have not plotted them here 
(regulation of nervous system development, FDR-corrected p=7.0x10-4; regulation of 
vesicle-mediated transport, p=3.2x10-3). 
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Figure S5. Distribution of the absolute difference in magnitude of rank effects 
between LPS-stimulated and untreated samples. Gray: genome wide distribution. 
Blue: genes where we detected a significant interaction effect between condition (control 
versus LPS+) and dominance rank (FDR < 0.05). Interaction effects are biased towards 
systematically larger effects of rank after LPS stimulation (Mann-Whitney test, 
p=4.2x10-86). 
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Figure S6. Transcription factors with putative binding sites enriched near rank-
responsive genes. FET odds ratios for TFBS clusters in which (i) the FET results were 
significant at a B-H FDR < 5%, and (ii) presence of the TFBS in open chromatin within 5 
kb of gene transcription start sites contributed to predicting whether genes were rank-
responsive or more highly expressed in high versus low-status females (non-zero betas in 
an elastic net logistic regression, for at least 50% of test sets). Points and whiskers show 
FET OR ± 95% CI. 
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Figure S7. Enrichment of LPS-responsive genes in deconvoluted cell type-specific 
gene expression data. We tested for enrichment of LPS-responsive genes identified in 
the deconvoluted data among the set of LPS-responsive genes identified in the non-
deconvoluted empirical data. In both cases, LPS-responsive genes were defined as genes 
differentially expressed between the control and LPS+ conditions at an FDR<0.01. As 
expected, granulocytes (log2(OR)=1.15, p=8.7x10-64) and monocytes (log2(OR)=0.46, 
p=5.7x10-12) were most important in mediating this response.   
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Figure S8. Kinship among study subjects. No groups contained first-degree relatives. 
The x-axis depicts the coefficient of relatedness (r), which ranges from 0-1 (r = 0.5 for 
full siblings and parent-offspring dyads). 
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Figure S9. LPS challenge experiment cell phenotyping strategy. (A) Schematic of the 
gating strategy for phenotyping the cells in the LPS challenge experiment. We first gated 
cells based on forward and side scatter, and then classified them into 11 cell populations 
using a combination of cell surface markers (Table S2). (B) Example of the phenotyping 
strategy for one sample visualized using FlowJo (FlowJo, LLC, Ashland, OR).   
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Figure S10. TFBS-based prediction of rank-responsive genes. Using putative TF 
binding sites (TFBS) in regions of open chromatin 5 kb upstream of the TSS of a gene, 
we could predict whether that gene was significantly positively (é rank) or negatively (ê 
rank) associated with dominance rank with 62.5% (range: 60.8-64.5%) and 58.8% (range: 
52.5%-60.5%) accuracy in natural killer cells and helper T cells, respectively.  
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